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Abstract—Tuture spacecraft are envisioned as autonomous,
miniature, intelligent and massively distributed systems. At
the Surrey Space Centre, a research project is currently
under investigation, which aims to develop a picosatellite
sensor network using the CubeSat platform. The proposed
satellite sensor network will be used to demonstrate
technology advances in space, including modified IEEE
802.11 wireless standard for inter-satellite links (ISL),
distributed computing for computationally intensive on-
board signal processing, and reconfigurable system-on-a-
chip (SoC) design. '*
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1. INTRODUCTION

The research presented in this paper i1s part of the
ESPACENET project [1], which aims to develop enabling
technologies for future distributed space architectures based
on flexible, reconfigurable, evolvable, and intelligent multi-
spacecraft sensing networks. “Evolvable Networks of

Intelligent and Secure Integrated and Distributed
Reconfigurable System-On-a-Chip  Sensor Nodes for
Aerospace  Based Monitoring and Dhiagnostics™, or

ESPACENET for short, is funded by the UK research
council EPSRC. It targets the development of a robust
satellite sensor network based on flexible picosatellite
nodes or piconodes.

Future spacecraft are envisioned as autonomous, miniature,
intelligent and massively distributed space systems [2]. The
Satellite Sensor Network is proposed, which applies the
concept of terrestrial wireless sensor networks to low Earth
orbit (LEO) spacecraft. The concept of satellite sensor
1
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networks can be applied to many space missions. Some
examples are the following:
¢ realising co-orbiting assistants/inspectors of larger
mother ships;
¢ providing continuous Earth coverage for mult-
point  remote sensing, monitoring or
communications at low cost in LEO;
¢ providing continuous communications for multiple
low-powered surface vehicles around the Moon,
Mars and other planets or asteroids.

The research carried out at Surrey Space Centre is aimed at
both node and network levels. At the node level,
picosatellites based on the CubeSat [3] bus are being built.
For fast prototyping, commercial-off-the-shelf (COTS)
components/boards are chosen, including the flight module,
MHX transceiver and satellite chassis from Pumpkin [4],
power module from Clyde-Space [5], and a GPS module
from SSTL [6]. The payload subsystem needs to be
customized to perform the proposed satellite mission
objective. At the network level, a wireless COTS protocol
for inter-satellite communication is designed based on the
terrestrial TEEE 802.11 standard [7]. A multi-objective
optimization algorithm is used to optimize signal routing
within the satellite network [8]. Computationally intensive
tasks for virtual satellite missions are selected, which are to
be processed using a distributed approach [9].

The remaining paper is organized as follows. Section 2
introduces the proposed satellite mission. Section 3 focuses
on the network-level architecture, including inter-satellite
links, routing algorithms and distributed computing.
Section 4 presents some simulation results. Section 5 looks
into the detailed payload hardware architecture and
Section 6 concludes the paper.

2. SATELLITE MISSION

As a practical output of the ESPACENET project we aim to
prototype a picosatellite based on the CubeSat platform and
commercial-off-the-shelves (COTS) components for a
distributed satellite mission consisting of three such
picosatellites in LEO. Two launch opportunities are
available to us: 1. Via the CubeSat program [10], in which
more than 60 universities take part. 2. Via Surrey Satellite



Technology Limited (SSTL), a spin-off company of the
University of Surrey, who have indicated that they would be
willing to provide a flying opportunity on one of their future
micro-satellites, which could act as a mothership releasing
the picosatellites in space at particular times. Exact orbital
parameters would be determined as the project progresses
with the launch provider.

The mission objective is to demonstrate and test novel
technologies resulting from the project. The following
technologies, which are under development at present, will
be demonstrated:

1. Inter-satellite links capable of supporting standard
wireless protocols

2. Distributed computing over a network of 3 satellites,
which is capable to support three applications:

a. Smmple  collaborative  maging  including
compression/decompression and image
processing tasks, e.g. sending of an image or part
of an image to another satellite for processing;
pattern recognition on the whole image, provided
by all the three satellites, etc.

b. Measurement and  processing of  the
electromagnetic spectrum of the atmosphere
using a reconfigurable MEMS antenna [11].

¢. Running and computing of multi-objective
evolutionary optimization algorithms (MOEA)
for signal routing.

3. Secure processing at node and network level

4. Reconfigurable computing in space based on a system-
on-a-chip (SoC) on-board controller implemented in
an FPGA.

3. DESIGN OF A SATELLITE SENSOR NETWORK

The ESPACENET project aims to develop an ad-hoc
network with picosatellites in LEO. The mass of such
satellites 1s less than 1 kg. Sensing and on-board computing
are also expected within the satellite network. Fig. 1 shows
the network architecture of the satellite cluster. The master
node is a larger picosatellite or a microsatellite; and all the
slave nodes are picosatellites. Within one cluster, the master
satellite serves as the cluster head, and controls the other
slave satellites. All the communications between the
satellite clusters, and the ground station take place via the
master satellite. The slave satellites together with the master
satellite are grouped as an ad-hoc network, which allows
peer-to-peer communication between two nodes.

\ @ Master
O Slave

Figure 1. A satellite cluster with master and slave nodes

The satellites within a cluster should work together to
perform distributed satellite missions. And in order to
support these missions, several research topics are
investigated, including inter-satellite link (ISL), distributed
computing, and multi-objective optimization for signal
routings.

Inter-satellite Links

The inter-satellite link 1is established via wireless
communication protocols and based on the terrestrial
IEEE 802.11 standard. However the IEEE 802.11 standard
normally supports a typical communication range within
300m. For space, the separation between satellites should be
more than at least 1 Km. Hence the protocol must be
modified to meet this requirement.

The main access technique of IEEE B02.11 is called
Distributed Coordination Function (DCF), which is based
on the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) and a random back-off interval
following any busy medium condition. The CSMA/CA
protocol specifies that for a node to transmit, it will first
sense the medium around it to determine whether another
node 1s transmitting. 1f the node in question finds that the
medium is free, then that node will begin transmission. The
CSMAJ/CA algorithm also mandates a delay between
contiguous frame sequences. A transmitting node will make
sure that the medium is idle for this required duration of
time. Nodes will each select a random back-off interval to
mitialize a counter, and will decrement this counter while
the medium remains idle. Once a node has determined that
the medium 1s idle, short inter-frame space (SIFS) and DCF
inter-frame space (DIFS), are defined, to provide delays
between sending and receiving request to send (RTS), clear
to send (CTS), DATA and Acknowledgement (ACK)
packets.

The TEEE 802.11 standard defines SIFS 10 uS, and DIFS
50 uS. However, these timings are only meaningful for
indoor use of 300m range. For a minimum 15 Km
communication range the Medium Access Control (MAC)
inter-frame timing for control and data transfer need to be
re-defined for an inter-satellite link [12]. The IEEE 802.11
standard defines the timing parameters according to the
following equations [13]:

SIFS = RxRFDelay + RxPLCPDelay +



Muc Processing Delay + RxTxTurnaroundTime,

SlotTime = CCATime + TxTxTurnaroundTime +
AirPropagdationTime + Mac ProcessingTime,

DIFS = SIFS + 2 * SlotTime,

AckTimeout = frame TXtime + AirPropagationTime +
SIFS + AckTXtime + AirPropagationTime. (1

From equations (1), the DIFS, SlotTime, and AckTimeout
depend on the AirPropagationTime. By increasing the
distance between nodes, the AirPropagationTime increases
and all the parameters have to be redefined. Table 1
compares the parameter between the IEEE 802.11 standard
timing and the inter-satellite link timing with 15 Km
communication range.

Table 1. Comparison of inter-frame timing of the
IEEE 802.11 standard and the inter-satellite link

Parameters IEEE 802.11 | Inter-satellite link
wS) wS)
SlotTime 20 75
SIFS 10 33
DIFS 50 160
CCATime <15 15
RxTxTurnaroundTim <5 5
e
AirPropagationTime 1 55
MacProcessingTime 0 0
AckTimeout 1 1729
Distributed Computing

Picosatellites have very limited resources in terms of power,
processor speed, and memory. It is not viable to perform
computationally intensive tasks like multi-objective
optimization on a single node. However the processing
capability of individual picosatellites could significantly be
improved by distributing such tasks to multiple nodes.

Distributed computing requires faster development cycles,
decreased effort, and greater software reuse, which
motivates the creation and use of middleware and
middleware-based architectures [14]. Middleware is a
software layer that resides between the application
programs and the underlying operating systems, including
network protocol stacks. Network middleware mediates
between an application program and a network as illustrated
in Fig. 2. It manages the interaction between applications
across heterogeneous computing nodes.

Agents are a programming abstraction, which is used for
middleware design in networked systems. By thinking
behaviourally (assigning an agent a ‘role’), communication
interactions and autonomous actions become easier to
realise. This allows them to work ‘proactively’ and
‘reactively’ to their environment and to any given task.
They can be proactive when finding new communications
routes in a networked environment and reactive to

disconnections, low bandwidths or high latencies [15].

Application Network Middleware: A
library between the OS and
Middleware the application that insulates
TCP/IP stack application from the raw
network and provides an
Hardware easier way to communicate
Application Application Application
/'y K y
Y X Y
Middleware

Figure 2. Network middleware structure

There are many potential benefits to using Agents on-board
spacecraft. These include (but not exhaustively) the
following:
e Increasing the level autonomy through decomposition
of high-level goals;
e Increasing the flexibility and adaptability of flight
software through dynamic agent uploads
e Improving the reliability of spacecraft and clusters of
spacecraft by incorporating fault detection at both high
and low levels thus reducing the need for large ground
support organizations.

In a satellite network mobile software Agents could be used
for the following:

e Deployment, Upgrading and Maintenance: The
exploitation of mobile code to support software
deployment and maintenance is very useful in a highly
distributed environment. Mobile code paradigms
would allow the action of configuration of new
software and hardware units, such as Intellectual
Property (IP) cores in a FPGA, or rebuilding of an
application with new parameters locally at each
satellite. Proactive reconfiguration by comparing both
hardware characteristics and software features for
configuring and installation could be automated.
Functionality could be added or removed dependant on
the satellite’s resources.

e Customisation of Services: Agents on board satellites
could provide a flexible service for both server and
client roles dependant on their current hardware and
software status. This allows Agents to be reactive in
their communications to other satellites.

e Disconnected Operations: Without an attitude
determination and control system, the picosatellites
could be tumbling and moving in differing orbits
making  intersatellite  communication  difficult.



Unreliable links with low-bandwidth and low-
reliability require new methods for allowing flexibility
in the system. Improving granularity in the client-
server paradigm would allow a greater number of
operations but would increase local resource use,
complexity and reduce flexibility for change.

e Improved Fanlt Tolerance: Traditional client-server
systems request data and services from remote
environments which can then be executed locally. But
if a return result is only partially complete, there are
problems in addressing the state and possible recovery.
As Agents encapsulate all state information in a single
component, the information can be traced and
recovered. Destructive space environment effects
could be mitigated using Agents to detect hardware or
even software errors.

The JADE-LEAP [16] software environment is adopted for
mobile agent development and is used extensively to
develop new Agent systems and novel applications for
resource constrained devices using wireless links in Java.
To accommodate the agent computing environment, a Java
Virtual Machine (JVM) for embedded devices is typically
required, which can serve as a communication medium
between various heterogeneous platforms. However the
Java programming language is not the best choice for real-
time critical systems. To enable real-time functionality on
board satellite systems the use of a Java specific processor
called Java Optimized Processor (JOP) [17] is considered.

An FPGA-based SoC design is under development
incorporating the JOP processor with the LEON3 SPARC
V8 processor [18] as a secondary master processor core.
The interface between LEON3 and JOP is achieved via the
AMBA2-AHB bus as shown in Fig. 3. Benefits of utilizing
JOP in an FPGA include moving the JVM software to
hardware, reducing the memory footprint and enabling Java
applications, such as Agents, for real-time applications.

Signal Routing

The data captured by sensors on board the slave satellites
are processed and then they are sent to the ground station
via the master satellite. Satellites performing a distributed
satellite mission would also be required to carry out
computationally intensive processing in addition to inter-
node communication. Two network optimization objectives
are considered: transmission power and time. The
transmission power is required to guarantee reliable
communications.
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Figure 3. LEONS3 and JOP integration system level

The well known Friis free space propagation model [19]
defines the relationship between the received and the
transmitted power. It concludes that by multi-hopping the
sensed data will significantly reduce the power for
communication. The transmission time for multi-hopping in
a n-satellite network is given by the propagation delay and
the satellite queuing and processing delay, which is
determined by the amount of buffers, queuing discipline,
servers and the packet arrival rate [8)]. These two objectives
are competing to each other. On the one hand more hopping
satellites will save more power; on the other hand the end-
to-end time delay will be increased.

MOEA is aimed at providing a set of Pareto-optimal routes,
in which both objectives are optimized. The MOEA starts
with a parent population, each individual containing a route
from the starting node to the destination node, i.c. its
chromosome. Each parent is randomly mated with one
another to produce two children (crossover). The children
are then mutated with certain probability. The objective
functions of the children are calculated, and a fitness value
is assigned to the parent and children. The individuals with
best fitness are then passed onto the next generation. The
process continues until the maximum number of generations
is reached. In the end an optimized route is obtained.
However nodes that are not working temporarily are stored
in a vector. Any chromosome that contains such node will
be considered dead and discarded during evolution.

4. SIMULATION RESULTS

Simulations were performed to determine how useful a task
or service distribution would be on a network with varying
latencies on all OSI layers - from the hardware layer in a
LEON3 processor up to the application layer. As an
example, the JPEG2000 image compression encoder was
targeted for a 48 mega-pixel satellite image. Some
experimental variables include:

o Worst-case hardware switching delay = 1.258 ns
{Clock Report of LEON3 on XC3s-1500 FPGA)

e No.ofnodes=3



e MAC access delay = 2.049 ms [13]
e Service delay (variable)=1nstol s
e Propagation through free space

d 10,000
¢ 2.99792458x10°%

D ppugation = =3.33x107°s

e WiFi (IEEE 802.11b) Variables:
No. of transmissions = 3 (also variable),
Packet sizes = 1500 of 2346 bits, Channels = 14

e TImage Size: 7507 x 6399 pixels, File size: 50.826 to
6.386 MB

The ‘round trip delay’ results in Fig.4 show that task
distribution can reduce the time to complete a task, even
over a distributed satellite network but there is also a limit
on the number of nodes the task is distributed to before the
intersatellite link latencies become too great.

Intersatellite Link Metwark Latency - Image Compression Example
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Figure 4. Round trip delay of a satellite network

JADE-LEAP was successfully emploved to communicate
over an ad-hoc IEEE 802.11 wireless link with a number of
protocols, specifically TCP/IP and UDP, using multiple
laptops. A much preferable scheme used for satellites is
UDP, as described in [20] because it is better suited for
‘store-and-forward® communications. UDP has a number of
advantages: it is faster (a dropped packet, in this case, is
preferred to a delayed packet); it can take advantage of
JADE’s Agent Communication Language (ACL) for
acknowledgements and finally supports packet broadcast
and multicasting.

As a fast demonstrator, JADE-LEAP was also used to
distribute the JPEG2000 encoder service using the ACL
scheme for agent registration and negotiation. Consider the
scenario in a distributed satellite system where a satellite
has an image to compress but does not have the service
stored locally. It then beacons out to neighbouring satellites

in the network to find if another satellite has that service.
One satellite does and then wraps the service in a “Mobile
Agent’, transfers itself across to the imaging satellite,
executes that service and then returns to the original satellite
it came from.

Wireshark [21], a network protocol analyser, is used to
capture live network data throughputs in our network using
the JADE-LEAP system and mobility of Agents. Wireshark
is typically used to troubleshoot network problems, examine
security problems and learn/debug protocol
implementations, which makes it ideal for this analysis. We
started with running the described scenario using JADE-
LEAP’s default protocol: TCP/IP. The throughput results
are shown in Fig. 5 for varying different sizes of Agents
from 12 KB down to 2.7 KB, where the black coloured
graph denotes the TCP throughput and the red - the
throughput of the Remote Method Invocation (RMI) mobile
Agent.

Figure 5. TCP throughput (bits/tick)

Agent pavload size affects the throughput, where the
smaller Agent has a lower data rate requirement: from
300.72 kbps with a 2.7 KB Agent to 409.6 kbps fora 12 KB
Agent. The results in Fig. 5 also show that TCP utilizes
much of the throughput for fault tolerance and reliability in
its acknowledgement scheme which reduces the total
pavload data throughput over the network. This is
confirmed by similar graphs in Fig. 6 where Agents of
different sizes have different throughputs and completion
times.
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Figure 6. TCP throughput analysis; a) Time 7.5 to 8.5
and b) 26.5to 27.5s

At this point in time, there is no complete UDP transport
gservice in JADE-LEAP and an internal communications
peer (ICP) is required to plug-in to JADE-LEAP’s
interfaces.

5. PICOSATELLITE DESIGN

Cube Sat Bus

The CubeSat platform is a 10x10x10 cm standard bus
structure weighing at 1 kg, which is compatible with the
PC/104 tormat. The CubeSat bus also comes in double (2U)
and triple unit (3U) sizes to conform to the P-POD
deployment mechanism. The CubeSat Kit platform has sold
over 30 kits since the first launch of CubeSat in 2003 to
researchers and companies in the small satellite field
because it provides a standard COTS solution to develop
new technologies. CubeSat advantages include a space
ready structure, a reliable “flight module’ as the main on-
board computer (OBC) based on the low power TI MSP430
microcontroller and many other CubeSat designs to learn
from. Foreseeable problems include limited power budget
for communicating to ground or operating payloads, with
typical CubeSats having between 1 — 2 W of total satellite
power.

The CubeSat development kit and the proposed picosatellite
model are shown in Fig. 7. The Flight Module and the IEEE
802.11 PC/1™ board are attached to the development board
through the CubeSat kit bus.

Figure 7. CubeSat development kit and the proposed
picosatellite

The OBC is to be a MSP430 microcontroller with an
embedded reduced operating system, called Salvo. An
MHX transceiver is available from Microhard Systems [22].
The transceiver can plug into the flight module directly. The
CubeSat also accepts the 9XStream series of 910 AfHz and
2.4 GHz transceivers from MaxStream which successfully
flew on NASA’s GeneSat-1 [23]. A CubeSat power
subsystem commercially available from Clyde-Space
includes Electrical Power System (EPS), battery and solar
arrays. The 1U power board can provide 2.4 W (sunlit
average) [5]. Three boards are in a process of development
in house — a communications board to support wireless
IEEE802.11 ISL, an FPGA board for distributed computing
and a camera board.

The development of effective space networks requires the
characteristics of a WSN reliability, robustness, flexibility
and redundancy. Research into all current CubeSat missions
shows that reliability and simplicity with the whole satellite
is a key requirement to ensure success, whilst having more
complex systems as separate payloads. To ensure reliability
in space, we propose a satellite bus architecture that treats
our new technology systems as payloads, as shown in Fig.
8.
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Figure 8. ESPACENET satellite architecture

Payload

The picosatellite nodes are to be computationally able to run
MOEA on board to optimise the networks ability to perform
the mission e.g. make decisions from complex algorithms
on resource allocation. This will require additional hardware
(CPU, memory, etc) and software (OS, applications)
resources to be provided in the CubeSat constrained
structure. Because this is a ‘technology demonstration’
mission, we design the payload including all the necessary
components for distributed computing.

Fig. 9 shows the hardware architecture of the payload,
consisting of three modules for satellite missions. The
Global Positioning System (GPS) is used to determine the



satellite attitude and position in orbit. GPS can have many
benefits for a distributed computing environment in space,
especially with respect to cluster management, formation
flying and collision avoidance. A space-enhanced GPS
module can be provided by our spin-off company SSTL.
Reconfigurable MEMS antenna is currently being built by
our academic partner University of Edinburgh. The payload
high-performance computing is based on a system-on-a-
chip design, implementing the LEON3 processor and other
associated peripherals. The peripheral TP cores include
image compression, wireless MAC/PHY for inter-satellite
link, image encryption. All these IP cores are currently
under development at the Surrey Space Centre.

Camera System

MEMS Antenna & GPS System

LEON3-based FPGA System

Figure 9. The payload architecture

The payload is controlled by the main on-board controller,
which is the MSP430 microcontroller, via the T2C bus.
While the satellites are running in orbit, these modules can
be turned on/off in according to the remaining power and
mission requirements.

System-on-a-Chip Design

The payload computer and its peripherals are designed as a
SoC in order to improve the hardware efficiency in terms of
power, speed and area. Our payload computer includes a
high-performance SPARC V8 processor LEON3 [18]. The
SPARC V8 1s a standard RISC architecture with typical
features like large number of registers and few and simple
mstruction formats. However, the LEON3 IP core 1s more
than a SPARC compatible CPU. It is also equipped with
various peripherals that interconnect through two types of
the AMBA bus (AHB and APB). Hence the SoC design 1s
centric on the AMBA bus. All the IP cores can be added or
removed from the bus.

The LEON3 processor supports many operating systems,
including RTEMS, eCos, embedded Linux, and etc. For our
project, RTEMS 1is chosen because it has a much smaller
footprint; runs faster; and provides a multiprocessor
manager [24]. All these features are essential for distributed
computing within a picosatellite sensor network.

Image compression and multi-objective evolutionary
optimization algorithms are computationally intensive. Our
objective is to realise these algorithms as high-speed
implementations. The algorithms can be run as software
programs, but this approach is not sufficiently fast, which 1s
an important requirement for real-time applications. The
most efficient approach is to implement the computationally
intensive algorithms as hardware accelerators. For example,

we aim to implement the image compression algorithm as a
hardware 1P core and integrate as a peripheral to the LEON
processor.

Another approach 1s to implement some functionality of the
algorithms as an IP core, and to run the remaining
functionality as software on the processor. We can achieve
an optimal software-hardware split by profiling the
algorithms. Here we take the MOEA as an example. The
MOEA is initially programmed in C. It is running with the
RTEMS real-ime operating system on the LEON3
processor. The LEON3 is clocked at 40 MHz. There are lots
of ‘multiply’ (MUL) and ‘divide’ (DIV) operations in the
MOEA algorithm. We configure the LEON3 processor with
three options: soft “MUL/DIV’ option, hard ‘MUL/DIV’
option (IP core), and floating point unit. The soft
‘MUL/DIV’ option can emulate ‘multiply’ and ‘divide’
operations with software. The hard ‘MUL/DIV’ option
provides hard wired ‘multiply” and ‘divide’ operations with
the LEON3 processor. The floating point unit together with
the “MUL/DIV" IP core can realize the operations without
any soft means. The C program of the MOEA algorithm is
compiled using the RTEMS cross compiler. Table 2 shows
the compilation results.

Table 2. Profiling results of MOEA for LEON3

Options Time ‘MUL/DIV? Ratio

(mS) (mS) (*0)

Soft 1.54 0.159 10.32
MUL/DIY’

Hard 0.96 0.038 3.96
MUL/DIY’

Floating 0.19 0 0
point unit

In Table 2, the second column is the execution time of
MOEA. The third column is the time spent on the
‘MUL/DIV’ operation in the algorithm. It is obvious that
the soft implementation of the ‘MUL/DIV" is the slowest
approach. When a hard ‘MUL/DIV’ is implemented, there
are still “MUL/DIV’ operations after compilation. This is
because the float point unit is not implemented, and all the
fixed-point “MUL/DIV” operations will be removed, but the
floating ‘MUL/DIV’ operations will be running as software.
This is confirmed by the case when the floating point unit is
integrated, where no soft ‘MUL/DIV” operations are needed
any more. Also we find that the total speed of running the
program is increased by integrating the hardware IP core.
With the hard ‘MUL/DIV’, the execution time 15 62% of the
soft ‘MUL/DIV" time. However when both the floating
point unit and the hard “MUL/DIV” are present, it is only
12%.

Partial Run-Time Reconfiguration (FPGA)

The proposed payload computer is implemented in an
SRAM-based FPGA. FPGAs provide flexibility of design;



shorter time-to-market; lower cost; reconfigurability etc.,
which makes them suitable for use in small satellite on-
board systems. Many SRAM-based FPGAs, such as Xilinx
Virtex FPGAs, support partial run-time reconfiguration
(RTR) [25]. In this case, the FPGAs can be reconfigured
during mun-time introducing changes to specific parts of the
design only.

A disadvantage of SRAM-based devices is that they are
vulnerable to the high levels of radiation in the space
environment [26]. Heavy ions from cosmic rays can easily
deposit enough charge in or near an SRAM cell to cause a
gingle-bit error, or single event upset (SEU). Because
SRAM FPGAs store their logic configuration in SRAM
switches, they are susceptible to configuration upsets,
meaning that the routing and functionality of the circuit can
be cormupted. We take advantage of partial run-time
reconfiguration to mitigate the SEU effect by repairing the
areas affected by soft failures.

The FPGAs can accommodate not only soft IP cores, hard
IP cores are also available. For example Xilinx FPGAs
provide on-chip hard-wired cores like Block SelectRAM
(BRAM) and multipliers. Hard processor IP cores
(PowerPC) are also available in some Virtex II Pro and
Virtex I'V FPGAs. Starting from the Virtex II series, Xilinx
Virtex FPGAs have integrated an internal configuration
access port (ICAP) into the programmable fabric, which
enables the user to write software programs that modify the
circuit structure and functionality at run-time for an
embedded processor. The ICAP is, in fact, a subset of the
SelectMAP interface [27], which is used to configure Xilinx
FPGAs.

Application-specific soft IP cores are being developed at the
Surrey Space Centre to serve the requirements of the
gatellite mission, for example a Direct Memory Access
Controller (DMAC), a MAC controller to support wireless
inter-satellite links, a compression core and a fault-tolerant
encryption core for image processing, etc.. Fig. 10 shows a
diagram of the SoC architecture.

The on-chip peripheral bus (OPB) is used to connect all the
ICAP modules. The ICAP is connected to the LEON3
processor via the OPB-to-AHB bridge. Once the FPGA is
initialty configured, the ICAP is used as an interface to
reconfigure the FPGA. An ICAP device driver is included
in the embedded Linux operating system [28], which needs
to be adapted to RTEMS. The control logic for reading and
writing data to the ICAP is implemented in the LEON3
processor as a software driver. The BRAM is used as a
configuration cache. Because Virtex II FPGAs support
reconfiguration only by frames, the BRAM must be big
enough to hold one frame each time. The configuration
bitstream of each SoC component can be stored on board in
a Flash memory. The bitstream of a new or upgraded SoC
component can be uploaded
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Figure 11. The Reconfigurable SoC architecture of the
payload computer

6. CONCLUSIONS

In this paper we present a satellite sensor network for future
satellite missions based on the CubeSat picosatellite
platform. At network level a multi-objective optimization
algorithm is used to optimise the signal routing. To perform
satellite tasks, distributed computing over the satellite
network is proposed. Design methodology for designing the
pavload hardware and software at node level is detailed.
Image processing algorithms are implemented as peripheral
cores of the LEON3 processor. Partial run-time
reconfiguration is proposed to mitigate radiation effects in a
system-on-a-chip design, which is implemented using
SRAM-based FPGAs. A multi-agent software system is
proposed to support inter-node communication based on
IEEE 802.11 wireless connectivity.

It is envisaged that satellite sensor networks could be used
to monitor the Earth with a global coverage. The high-
performance FPGA device will enable fast on-board image
analysis, so that processing results rather than raw data are
gent to the ground station. Combined with the distributed
computing capability this can provide a low cost approach
to implementation of emergency response systems for
detection and monitoring from space.
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